Archiv der Kategorie: Vorschläge von Experimenten

Mögliche Experimentalorte

Göde-Institut Waldaschaff

  • vor allem Erfahrung mit parakonischem Pendel und den Auslenkunsgeffekten nach Allais

Fallturm Bremen

Einstein-Elevator Hannover

  • Schwerelosigkeitsexperimente

Deutsches Hauptschwerenetz

Fadenpendel in Abhängigkeit von Tag und Nacht/ vom Breitengrad

Grundgedanke

Wir suchen nach einem Experiment, einer Experimentalreihe, die mit einfachen Mitteln zu bewerkstelligen ist, überall auf der Welt nachvollzogen werden kann, vielleicht auch von Schulklassen oder im universitären Ausbildungsexperiment.

Ziel ist zunächst die klare Aufzeigung der veränderlichen Gravitation bzw. der Fallbeschleunigung im Rhythmus von Tag und Nacht als hinführenden Schritt zu Gedanken über eine neue Gravitationstheorie (Radialfeldhypothese).

 

Experimentvorschlag:

Fadenpendelwerte messen bei Tag und bei Nacht bei gleicher Anordnung des Experimentes

Möglichst langer Faden, hohes Pendelkörpergewicht, große Auslenkung

Möglichst langer Faden, hohes Pendelkörpergewicht, kleine Auslenkung

  • Messen der Schwingungsperiode
  • Messen der Gesamtschwingungsdauer

(Alle minimalen Einflussgrößen (z.B. Luftreibung des Pendels, Reibung an der Aufhängung) bleiben ungefähr gleich und können für den Zusammenhang vernachlässigt werden.)

Da wir von veränderlicher Fallbeschleunigung als Ausdruck veränderlicher Gravitationskraft ausgehen (idealer Weise) im Rhythmus von Tag und Nacht, ist nachts – bei größerer Gravitation durch die relative Unbeeinflusstheit des irdischen Verstrahlungsfeldes – eine geringere Schwingungsperiode und eine verkürzte Gesamtschwingungsdauer zu erwarten.

Stimmt das ?

T = 2 Pi x Wurzel aus L(Fadenlänge) dividiert durch g (Fallbeschleunigung)    (für kleine Winkel unter 10 Grad)

T ist also abhängig von der Fallbeschleunigung. Ist diese höher, dann sinkt T.

 

 

 

Nachfolgend eine Linksammlung als Materialsammlung für Experimentalideen bzw. für Vertiefung der Grundidee

https://de.wikipedia.org/wiki/Schwerefeld#Erdbeschleunigung

Ortsfaktor vom Breitengrad/

4_Musterprotokolle_01

Allgemeine Beschreibung des Fadenpendelexperimentes

………………………………………………………………………………………………………………………………………………….

Die auf der Doppler-Wissensplattform gezeigten Experimente eignen sich vielleicht für

Tag-Nacht-Vergleiche

Experimente zum Doppler-Effekt: Fadenpendel mit Lautsprecher

……………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………….

Führt ein Fadenpendel eine harmonische Schwingung aus?

Ein weiteres Beispiel für eine Schwingung ist die Schwingung eines Fadenpendels: Ein an einem Faden aufgehängter Pendelkörper wird ausgelenkt und losgelassen.

Fragen:

– Welches ist die rücktreibende Kraft bei einem Fadenpendel?

– Von welchen Größen hängt die Schwingungsdauer eines Fadenpendels ab?

– Ist die Schwingung eines Fadenpendels harmonisch?

Die rücktreibende Kraft bei einem Fadenpendel muss ihre Ursache in der Gravitationskraft haben – denn andere Kräfte wirken nicht. Die Gravitationskraft ist jedoch stets nach unten gerichtet – die Rückstellkraft kann also nur einem Anteil an der Gravitationskraft entsprechen.

Wovon hängt die Schwingungsdauer ab?

Experimentell lässt sich einfach feststellen:

Die Schwingungsdauer eines Fadenpendels hängt von der Länge l des Fadens ab.

Dabei gilt: Je länger der Faden, umso größer die Schwingungsdauer

Die Schwingungsdauer hängt jedoch nicht von der Masse m des Pendelkörpers oder der Auslenkung y ab.

Ist die Schwingung eines Fadenpendels harmonisch?

Um diese Frage beantworten zu können, müssen wir untersuchen, ob das lineare Kraftgesetz gilt, also ob die Rückstellkraft proportional zur Auslenkung ist.

Dazu betrachten wir ein Fadenpendel im Punkt der maximalen Auslenkung:

Fadenpendel

Wir zerlegen die Gewichtskraft F_{G} in zwei Komponenten:

Die Komponente \overrightarrow {F}_{r}, stellt die Rückstellkraft dar. Sie muss in Bewegungsrichtung des Pendelkörpers zeigen.

Die Komponente \overrightarrow {F}_{s}, ist die Kraft, die den Faden spannt.

Ändert sich die Auslenkung, so ändert sich auch die Größe der beiden Kräfte:

Ist die Auslenkung 0 – der Pendelkörper befindet sich also in der Ruhelage – so ist die Rückstellkraft 0. Der Pendelkörper bewegt sich aufgrund seiner Trägheit über die Ruhelage hinaus und wird dann abgebremst, da die Rückstellkraft nun der Bewegungsrichtung entgegengerichtet ist.

Der Pendelkörper beschreibt bis zur Ruhelage den Weg s (Teil einer Kreisbahn).

Für kleine Auslenkungen ist dieser Weg annähenrd gleich der Strecke x.

Es gilt also:   s ≈ x

Die Rückstellkraft Fr ist abhängig von der Gewichtskraft FG und der Auslenkung.

Für die Rückstellkraft gilt:

F_{r}=sin\varphi\cdot F_{G}

Für die Gewichtskraft gilt bekanntlich:   F_{g}=m\cdot g

Damit ergibt sich für die Rückstellkraft:

F_{r}=sin\varphi\cdot m\cdot g

Aus der Skizze ergibt sich:

sin\varphi=\dfrac {x}{l}

Damit gilt für die Rückstellkraft:

F_{r}=-m \cdot \dfrac {g\cdot x}{l}

Die Rückstellkraft ist negativ, da sie der Auslenkung entgegengerichtet ist.

Für kleine Auslenkungen (s ≈ x) gilt also annähernd:

F_{r}=-m\dfrac {g\cdot s}{l}

Damit gilt also das lineare Kraftgesetz  F_{r}\sim s

bzw.

F_{r}=-Ds     mit     D=\dfrac {mg}{l}     (Dies ist die Richtgröße beim Fadenpendel)

Für kleine Auslenkungen ist die Bedingung für eine harmonische Schwingung also erfüllt.

Für harmonische Schwingungen haben wir bereits eine Formel zur Berechnung der Schwingungsdauer hergeleitet:

Für harmonische Schwingungen gilt:     T=2\pi\sqrt {\dfrac {m}{D}}

Setzt man für die Richtgröße D den o.g. Zusammenhang ein, erhält man für die Schwingungsdauer

T=2\pi\sqrt {\dfrac {m}{\dfrac {m\cdot g}{l}}}=2\pi\sqrt {\dfrac {l}{g}}

Ein Fadenpendel schwingt bei kleiner Amplitude harmonisch mit der Schwingungsdauer

T=2\pi\sqrt {\dfrac {l}{g}}

Die Schwingungsdauer eines Fadenpendels hängt also von der Länge des Fadens sowie der Fallbeschleunigung g ab.

Die Fallbeschleunigung bestimmt die Gewichtskraft, die auf eine bestimmte Masse wirkt und damit die Rückstellkraft.

Man kann also aus der Schwingungsdauer eines Fadenpendels auf die Fallbeschleunigung schließen.

 

Es gibt offensichtlich Experimente zur Abhängigkeit der Fadenpendeleigenschaften in Abhängigkeit vom Breitengrad, der Fallbeschleunigung.

Experiment zur örtlichen Gravitationsdynamik

Experimentidee:

Messungen mit Gravimetern im bundesdeutschen Schwerehauptnetz (ca. 100 Messpunkte) der Fallbeschleunigungswerte in Abhängigkeit von der fortschreitenden Tages- und Nachtzeit (z.B. im Stundenrhythmus) über ein ganzes Jahr.

Nachts müssten die Werte der Fallbeschleunigung ansteigen wegen der weitgehend ungebremsten Radialverstrahlung, zum Tage hin wieder abnehmen usw.

Unter weitgehender Ausschaltung der Messinstrumente und Messwerte (möglicher Weise) beeinflussenden Größen wir Luftdruck- und Temperaturschwankungen und bei Beachtung der jahreszeitlichen Unterschiede im Abstand von Sonne und Erde sowie der minimalen permanenten Gravitationsabnahme durch das allmähliche Schwinden der Kraft des irdischen Radialfeldes.

Pendelgravimeter

Mit den heutigen Pendelgravimetern müssten sich experimentell hinreichend differenzierte und genaue Messungen bewerkstelligen lassen.

Im offiziellen Wikipedia-Artikel  https://de.wikipedia.org/wiki/Pendelgravimeter wird die breitengradabhängige Größe der Fallbeschleunigung (an der Erdoberfläche) so beschrieben, wie es die Kernverstrahlungshypothese von Helmut Friedrich Krause und Jochen Kirchhoff prinzipiell vorhersagt. (Sie wird nur anders gedeutet.)

Zitat Wikipedia (Heraushebungen UF):

Die Fallbeschleunigung an der Erdoberfläche hat auf Meereshöhe einen mittleren Wert von 9,806 m/s2 (meist gerundet auf 9,81 m/s2). Je nach Breitengrad treten aber auch Werte zwischen 9,78306 m/s2 und 9,83208 m/s2 auf, die Fallbeschleunigung ist dabei am Äquator am niedrigsten und an den Polen am höchsten. Die Gravitationsanomalien natürlichen Ursprungs betragen also ca. 0,5 %. Bei Untersuchungen in der Geophysik ergeben sich meist relevante Differenzen im Bereich eines Hunderttausendstels bis Einmillionstels, die von einem Gravimeter erfasst werden müssen. Eine Höhendifferenz von einem Meter führt zu einer Änderung der Fallbeschleunigung um etwa 3 Millionstel m/s2.